101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

497
active users

#Tetrahedron

0 posts0 participants0 posts today
foldworks<p>I tried to model these origami as transformation between cube and octahedron in Geogebra, but ended up with this instead<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
R. Sunder-Raj<p>And the rad tetra <a href="https://mathstodon.xyz/tags/geometric" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometric</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/Tetrahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/3dart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3dart</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/symmetry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>symmetry</span></a> <a href="https://mathstodon.xyz/tags/opticalillusions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opticalillusions</span></a> <a href="https://mathstodon.xyz/tags/opart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opart</span></a> made of " <a href="https://mathstodon.xyz/tags/radial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>radial</span></a> <a href="https://mathstodon.xyz/tags/circles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>circles</span></a> "</p><p><a href="https://mathstodon.xyz/tags/mathsart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathsart</span></a> <a href="https://mathstodon.xyz/tags/moirePattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>moirePattern</span></a> <a href="https://mathstodon.xyz/tags/tetrahedrons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedrons</span></a> <a href="https://mathstodon.xyz/tags/tetrahedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedra</span></a> <a href="https://mathstodon.xyz/tags/polyhedrons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedrons</span></a></p>
mc ☕<p>&gt; As easy as it is to make <a href="https://qoto.org/tags/triangles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangles</span></a> with <a href="https://qoto.org/tags/rational" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rational</span></a> <a href="https://qoto.org/tags/angles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>angles</span></a>, a similar problem in three dimensions proved so challenging that it took decades for the world’s best <a href="https://qoto.org/tags/mathematicians" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematicians</span></a> to resolve. What makes this kind of problem so much harder one dimension up?</p><p><a href="https://qoto.org/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedron</span></a></p><p>Why Triangles Are Easy and Tetrahedra Are Hard<br><a href="https://www.quantamagazine.org/triangles-are-easy-tetrahedra-are-hard-20220131/" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/triangles-a</span><span class="invisible">re-easy-tetrahedra-are-hard-20220131/</span></a></p>