101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

483
active users

#randomforest

0 posts0 participants0 posts today
💧🌏 Greg Cocks<p>Assessment Of Snow Cover Dynamics And The Effects Of Environmental Drivers In High Mountain Ecosystems<br>--<br><a href="https://doi.org/10.1016/j.eiar.2025.107969" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.eiar.2025.10</span><span class="invisible">7969</span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/remotesensing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>remotesensing</span></a> <a href="https://techhub.social/tags/earthobservation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earthobservation</span></a> <a href="https://techhub.social/tags/snow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>snow</span></a> <a href="https://techhub.social/tags/ice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ice</span></a> <a href="https://techhub.social/tags/snowcover" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>snowcover</span></a> <a href="https://techhub.social/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a> <a href="https://techhub.social/tags/climatechange" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climatechange</span></a> <a href="https://techhub.social/tags/mountains" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mountains</span></a> <a href="https://techhub.social/tags/ecosystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ecosystems</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/MODIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MODIS</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/extremeweather" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>extremeweather</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/climate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climate</span></a> <a href="https://techhub.social/tags/zones" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>zones</span></a> <a href="https://techhub.social/tags/trendanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>trendanalysis</span></a> <a href="https://techhub.social/tags/linearregression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearregression</span></a> <a href="https://techhub.social/tags/RandomForest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomForest</span></a> <a href="https://techhub.social/tags/cryosphere" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cryosphere</span></a></p>
💧🌏 Greg Cocks<p>Avalanche Debris Detection From Sentinel-2 Data Using Fuzzy Machine Learning And Colour Spaces For The Indian Himalaya<br>--<br><a href="https://doi.org/10.1080/2150704X.2025.2488532" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1080/2150704X.2025.</span><span class="invisible">2488532</span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/snowavalanches" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>snowavalanches</span></a> <a href="https://techhub.social/tags/snow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>snow</span></a> <a href="https://techhub.social/tags/avalanches" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>avalanches</span></a> <a href="https://techhub.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://techhub.social/tags/fuzzyclassification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fuzzyclassification</span></a> <a href="https://techhub.social/tags/SVM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SVM</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/randomforest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>randomforest</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/forecasting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>forecasting</span></a> <a href="https://techhub.social/tags/risk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>risk</span></a> <a href="https://techhub.social/tags/hazard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hazard</span></a> <a href="https://techhub.social/tags/massmovement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>massmovement</span></a> <a href="https://techhub.social/tags/engineeringgeology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineeringgeology</span></a> <a href="https://techhub.social/tags/remotesensing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>remotesensing</span></a> <a href="https://techhub.social/tags/earthobservation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earthobservation</span></a> <a href="https://techhub.social/tags/imagery" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>imagery</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/change" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>change</span></a> <a href="https://techhub.social/tags/debris" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>debris</span></a> <a href="https://techhub.social/tags/detection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>detection</span></a> <a href="https://techhub.social/tags/satellite" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>satellite</span></a> <a href="https://techhub.social/tags/sentinel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sentinel</span></a> <a href="https://techhub.social/tags/Himalaya" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Himalaya</span></a> <a href="https://techhub.social/tags/Himalayas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Himalayas</span></a> <a href="https://techhub.social/tags/performance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>performance</span></a></p>
iCode2<p>I scaled up the popular Palmer Penguins machine learning dataset from 344 rows to 100k rows using adversarial random forest, with an accuracy of 88%.</p><p>Now, you have more rows of data with which to train your classification models.</p><p>You can download it here, along with R &amp; Python scripts, to load and view the dataset: <a href="https://ieee-dataport.org/documents/palmer-penguins-100k-0" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">ieee-dataport.org/documents/pa</span><span class="invisible">lmer-penguins-100k-0</span></a></p><p>Have a dataset you want to scale up? Say hello!</p><p><a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.social/tags/randomforest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>randomforest</span></a> <a href="https://mastodon.social/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.social/tags/datasets" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datasets</span></a> <a href="https://mastodon.social/tags/syntheticdatageneration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>syntheticdatageneration</span></a> <a href="https://mastodon.social/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a></p>
Felix Schönbrodt<p>Our paper about the comparison of <a href="https://scicomm.xyz/tags/machineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machineLearning</span></a> and regression analysis in predicting <a href="https://scicomm.xyz/tags/sexual" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sexual</span></a> reoffenses will be published in "<a href="https://scicomm.xyz/tags/Assessment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Assessment</span></a>"<br> <br>Guess what? "<a href="https://scicomm.xyz/tags/RandomForest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomForest</span></a> Does Not Outperform Logistic Regression in the Prediction of Sexual Recidivism"</p><p>With Sonja Etzler, @MarRettenberger@twitter.com, <span class="h-card"><a href="https://fosstodon.org/@florianpargent" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>florianpargent</span></a></span><br> <br>Preprint: <a href="https://psyarxiv.com/z6ky2" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">psyarxiv.com/z6ky2</span><span class="invisible"></span></a></p><p><a href="https://scicomm.xyz/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://scicomm.xyz/tags/preprint" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>preprint</span></a> <a href="https://scicomm.xyz/tags/psychology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>psychology</span></a></p>
Omid V. Ebrahimi<p>Interesting new study estimating the <a href="https://mastodon.social/tags/replicability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>replicability</span></a> of published research in <a href="https://mastodon.social/tags/psychology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>psychology</span></a> over the past 20 years.</p><p>The paper includes *nearly all papers* published in six top psychology <a href="https://mastodon.social/tags/journals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>journals</span></a> over last 2 decades.</p><p><a href="https://www.pnas.org/doi/10.1073/pnas.2208863120" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pnas.org/doi/10.1073/pnas.2208</span><span class="invisible">863120</span></a></p><p>The researchers used a <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> model (<a href="https://mastodon.social/tags/RandomForest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RandomForest</span></a> &amp; logistic regression ensemble) to estimate the replication likelihood of over 14,000 <a href="https://mastodon.social/tags/articles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>articles</span></a> from 2000-2019 in six subfields of psychology.</p><p><a href="https://mastodon.social/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://mastodon.social/tags/Academia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Academia</span></a> <a href="https://mastodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Research</span></a> <a href="https://mastodon.social/tags/Fediverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fediverse</span></a> <a href="https://mastodon.social/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAccess</span></a></p>
Loki<p>A well-crafted animation tells more than a thousand words 🎥 . Using <a href="https://mastodon.social/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ggplot2</span></a> and <a href="https://mastodon.social/tags/gganimate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gganimate</span></a> to understand the incremental performance gain (and saturation) of ensemble regressors. <a href="https://mastodon.social/tags/randomforest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>randomForest</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> 💻 🧠</p>