101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

586
active users

#quantumphysics

0 posts0 participants0 posts today
Barry Schwartz 🫖A summary of the experimental proof that the 2022 Nobel Prize in Physics is a load of garbage
Jacky Kapadia<p>Entangled Whispers: Sensing Gravity's Quantum Dance</p><p>Unlocking the Secrets of the Universe, One Quantum Step at a Time.</p><p><a href="https://open.substack.com/pub/influencer1986/p/entangled-whispers-sensing-gravitys?r=37m0cf&amp;utm_campaign=post&amp;utm_medium=web&amp;showWelcomeOnShare=false" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">open.substack.com/pub/influenc</span><span class="invisible">er1986/p/entangled-whispers-sensing-gravitys?r=37m0cf&amp;utm_campaign=post&amp;utm_medium=web&amp;showWelcomeOnShare=false</span></a></p><p><a href="https://flipboard.social/tags/QuantumEntanglement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumEntanglement</span></a>, <a href="https://flipboard.social/tags/Gravity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Gravity</span></a>, <a href="https://flipboard.social/tags/QuantumGravity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumGravity</span></a>, <a href="https://flipboard.social/tags/Spacetime" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Spacetime</span></a>, <a href="https://flipboard.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a>, <a href="https://flipboard.social/tags/QuantumMechanics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumMechanics</span></a>, <a href="https://flipboard.social/tags/GeneralRelativity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeneralRelativity</span></a>, <a href="https://flipboard.social/tags/HolographicPrinciple" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HolographicPrinciple</span></a>, <a href="https://flipboard.social/tags/QuantumSensing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumSensing</span></a>, <a href="https://flipboard.social/tags/BlackHoles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BlackHoles</span></a>, <a href="https://flipboard.social/tags/Cosmology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cosmology</span></a>, <a href="https://flipboard.social/tags/TheoreticalPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TheoreticalPhysics</span></a>, <a href="https://flipboard.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a>, <a href="https://flipboard.social/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a>, <a href="https://flipboard.social/tags/Universe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Universe</span></a>, <a href="https://flipboard.social/tags/Entanglement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Entanglement</span></a>, <a href="https://flipboard.social/tags/QuantumDance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumDance</span></a>, <a href="https://flipboard.social/tags/GravityWaves" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GravityWaves</span></a>, <a href="https://flipboard.social/tags/QuantumTechnology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumTechnology</span></a>, <a href="https://flipboard.social/tags/CosmicMysteries" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CosmicMysteries</span></a></p>
Ms. Que Banh<p><a href="https://beige.party/tags/Pioneering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pioneering</span></a> female <a href="https://beige.party/tags/Chinese" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chinese</span></a> <a href="https://beige.party/tags/American" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>American</span></a> physicist Chien-Shiung Wu, who worked with Robert <a href="https://beige.party/tags/Oppenheimer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Oppenheimer</span></a> on the <a href="https://beige.party/tags/ManhattanProject" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ManhattanProject</span></a>, was also the first to confirm <a href="https://beige.party/tags/QuantumEntanglement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumEntanglement</span></a> – just 14 years after Albert <a href="https://beige.party/tags/Einstein" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Einstein</span></a> questioned the phenomenon. The largely forgotten achievement was included in a profile of Wu, one of the most influential experimental physicists of the 20th century, published in the December 2024 issue of Physics Today.</p><p>Wu is also believed to have been the only Chinese scientist involved in the Manhattan Project, the World War II initiative to develop an <a href="https://beige.party/tags/AtomicBomb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AtomicBomb</span></a> led by Oppenheimer, who affectionately referred to her as Jiejie, which means elder sister, the article said.</p><p>Wu’s experiment – detailed in a paper published in 1950 – was conducted before the <a href="https://beige.party/tags/scientific" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scientific</span></a> community had fully grasped the significance of quantum entanglement, the article noted.</p><p><a href="https://amp.scmp.com/news/china/science/article/3298449/quantum-entanglement-theory-first-proved-chinese-woman-1949" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">amp.scmp.com/news/china/scienc</span><span class="invisible">e/article/3298449/quantum-entanglement-theory-first-proved-chinese-woman-1949</span></a></p><p><a href="https://beige.party/tags/AsianMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AsianMastodon</span></a> <a href="https://beige.party/tags/ChineseScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ChineseScientists</span></a> <a href="https://beige.party/tags/WomenInScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WomenInScience</span></a> <a href="https://beige.party/tags/PioneeringScienceWomen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PioneeringScienceWomen</span></a> <a href="https://beige.party/tags/Scientist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Scientist</span></a> <a href="https://beige.party/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://beige.party/tags/SciencePioneer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SciencePioneer</span></a> <a href="https://beige.party/tags/ChineseWomen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ChineseWomen</span></a> <a href="https://beige.party/tags/Physicists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physicists</span></a></p>
Barry Schwartz 🫖<p>It occurs to me that my most recent solution to the correlation of the Bell test has a weakness. In particular, it requires an assumption about "statistical equivalence" of circumstances that I would rather not make.</p><p>The Tumblr version seems correct but unclear that "horizontal" and "vertical" represent arbitrary directions.</p><p>Note nothing has changed. For instance, if you use probability theory to predict the detections of a Bell test, you get the same result as QM.</p><p><a href="https://masto.ai/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://masto.ai/tags/quantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumPhysics</span></a></p>
James House-Lantto (He/Him)<p><a href="https://www.sciencealert.com/quantum-experiment-reveals-light-exists-in-dozens-of-dimensions" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencealert.com/quantum-exper</span><span class="invisible">iment-reveals-light-exists-in-dozens-of-dimensions</span></a></p><p>A team of scientists conducted an experiment to test the Greenberger-Horne-Zeilinger paradox in quantum physics, which challenges the concept of local realism. </p><p>The text here can get pretty hefty, but it's a great article if you are into such things and can wrap your head around it. </p><p><a href="https://mastodon.social/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://mastodon.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a></p>
DaveKaz<p><a href="https://mastodon.social/tags/PBS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PBS</span></a>’ <a href="https://mastodon.social/tags/SpaceTime" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpaceTime</span></a> is great for stretching and breaking my brain. Any others people like to watch? <a href="https://mastodon.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://mastodon.social/tags/TheStandardModel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TheStandardModel</span></a> <a href="https://mastodon.social/tags/HiggsBoson" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HiggsBoson</span></a> <a href="https://mastodon.social/tags/Cosmology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cosmology</span></a></p><p><a href="https://youtu.be/GjkqedrTwZo" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/GjkqedrTwZo</span><span class="invisible"></span></a></p>
QUINTO project<p>Quantum simulation of topological orders</p><p>In the previous posts, I was talking a lot about complex quantum states that we aim to study in the QUINTO project: topological orders, in particular spin liquids. Now, let us see how quantum optics can help us in this endeavour. </p><p>Topological orders can be hard to find. Not all of them – one particular class, “fractional quantum Hall states”, can be created in the lab by applying very strong magnetic field to electrons confined in two dimensions. But others, such as spin liquids, remain elusive, even though scientists proposed some materials in which spin liquids might occur. </p><p>Moreover, with solid-state materials, we don’t usually have enough control to manipulate individual anyons as precisely as we would want (even though impressive experiments were performed with tiny anyon colliders and anyon interferometers in the quantum Hall systems). </p><p>An alternative is to assemble a quantum system – a “quantum simulator” from scratch, piece by piece, precisely controlling its parameters. For example, it is possible to “catch” a single atom with a laser beam – a so-called “optical tweezer”. The radiation pressure of the beam “traps” the atom in the point where the light is strongest, i.e. where the beam is focused. Such atoms can then be arranged in arrays resembling crystals.</p><p>[1/2]<br><a href="https://fediscience.org/tags/TopologicalOrder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TopologicalOrder</span></a> <a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/QuantumSimulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumSimulation</span></a> <a href="https://fediscience.org/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumOptics</span></a></p>
Sunflower Björnskalle 🌻<p>Periodic Table of Emission Spectra!</p><p><a href="https://mastodon.online/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://mastodon.online/tags/chemistry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chemistry</span></a> <a href="https://mastodon.online/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mastodon.online/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a> <a href="https://mastodon.online/tags/light" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>light</span></a></p>
IT News<p>Quantum Mechanics and Negative Time With Photon-Atom Interactions - Within our comfortable world of causality we expect that reactions always follow a... - <a href="https://hackaday.com/2024/12/31/quantum-mechanics-and-negative-time-with-photon-atom-interactions/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">hackaday.com/2024/12/31/quantu</span><span class="invisible">m-mechanics-and-negative-time-with-photon-atom-interactions/</span></a> <a href="https://schleuss.online/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a> <a href="https://schleuss.online/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a></p>
Inkican<p>Scientists have long known that light can sometimes appear to exit a material before entering it—an effect dismissed as an illusion caused by how waves are distorted by matter.</p><p><a href="https://phys.org/news/2024-12-scientists-negative-quantum.html?ICID=ref_inkican#physics" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-12-scientis</span><span class="invisible">ts-negative-quantum.html?ICID=ref_inkican#physics</span></a> <a href="https://mastodon.social/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://mastodon.social/tags/chemistry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chemistry</span></a> <a href="https://mastodon.social/tags/biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biology</span></a> <a href="https://mastodon.social/tags/astronomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astronomy</span></a> <a href="https://mastodon.social/tags/neet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neet</span></a> <a href="https://mastodon.social/tags/space" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>space</span></a> <a href="https://mastodon.social/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a> <a href="https://mastodon.social/tags/engineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineering</span></a> <a href="https://mastodon.social/tags/physicsfun" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physicsfun</span></a></p>
Prof Heino Falcke<p>Last year we published a paper with a unified derivation of Hawking radiation and the Schwinger effect. Surprisingly we didn’t need the black hole event horizon to pair produce in a gravitational field. This could mean that not only <a href="https://mastodon.social/tags/blackholes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blackholes</span></a>, but also neutron stars or white dwarfs would evaporate eventually. <span class="h-card" translate="no"><a href="https://astrodon.social/@startswithabang" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>startswithabang</span></a></span> has produced an excellent summary of the discussion, that is worth a read. <a href="https://bigthink.com/starts-with-a-bang/everything-hawking-radiation/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bigthink.com/starts-with-a-ban</span><span class="invisible">g/everything-hawking-radiation/</span></a><br><a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mastodon.social/tags/astrodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astrodon</span></a> <a href="https://mastodon.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://mastodon.social/tags/astronomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astronomy</span></a></p>
Mark A. Rayner<p>Just for that he doesn't get to see the interference pattern.</p><p><a href="https://mas.to/tags/humor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>humor</span></a> <a href="https://mas.to/tags/humour" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>humour</span></a> <a href="https://mas.to/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a> <a href="https://mas.to/tags/observerEffect" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>observerEffect</span></a></p>
Prof Heino Falcke<p>Black holes can decay via Hawking Radiation, but how about neutron stars or ordinary matter? </p><p>We find that they should do something similar. Gravitational fields relax in the presence of quantum fields and essentially everything evaporates on long timescales. The paper is submitted as a preprint now and open for comments. </p><p>„An upper limit to the lifetime of stellar remnants from gravitational pair production“</p><p><a href="https://arxiv.org/pdf/2410.14734" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2410.14734</span><span class="invisible"></span></a> </p><p><a href="https://mastodon.social/tags/Astrodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Astrodon</span></a> <a href="https://mastodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mastodon.social/tags/Astronomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Astronomy</span></a> <a href="https://mastodon.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://mastodon.social/tags/BlackHoles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BlackHoles</span></a></p>
Ele Willoughby, PhD<p>Happy birthday to Danish <a href="https://spore.social/tags/physicist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physicist</span></a> Niels Bohr (1885-1962). One of his most famous contributions to quantum mechanics was the Bohr-Rutherford model of the atom. Bohr is shown next to the Bohr model of the Hydrogen atom (all the concentric circles are actually at the appropriate spacing, proportional to the n squared). 🧵1/n<br>⁠<br><a href="https://spore.social/tags/linocut" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linocut</span></a> <a href="https://spore.social/tags/sciart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sciart</span></a> <a href="https://spore.social/tags/printmaking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>printmaking</span></a> <a href="https://spore.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://spore.social/tags/Bohr" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bohr</span></a> <a href="https://spore.social/tags/quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantum</span></a> <a href="https://spore.social/tags/histsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>histsci</span></a> <a href="https://spore.social/tags/quantumMechanics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumMechanics</span></a> <a href="https://spore.social/tags/quantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumPhysics</span></a> <a href="https://spore.social/tags/atom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>atom</span></a> <a href="https://spore.social/tags/MastoArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MastoArt</span></a></p>
Colin the Mathmo<p>Question for <span class="h-card" translate="no"><a href="https://mastodon.social/@jimalkhalili" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>jimalkhalili</span></a></span> and <span class="h-card" translate="no"><a href="https://mastodon.social/@sellathechemist" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>sellathechemist</span></a></span> ...</p><p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@VergaraLautaro" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>VergaraLautaro</span></a></span> is looking to read a book or two which tells the story of how the advent of quantum mechanics impacted Chemistry. Specifically, how did the theory of orbitals and filling rules develop, what experiments confirmed them, and when. When and how were covalent and ionic bonds understood, etc. All of that.</p><p>Jim, I know you had a section on the influence of Quantum Physics on living systems, and Andrea, I know your work is likely to require significant knowledge of these things.</p><p>Can you point <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@VergaraLautaro" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>VergaraLautaro</span></a></span> in the right direction?</p><p>OK, HashTags</p><p><a href="https://mathstodon.xyz/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://mathstodon.xyz/tags/QuantumChemistry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumChemistry</span></a> <a href="https://mathstodon.xyz/tags/Chemistry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Chemistry</span></a> <a href="https://mathstodon.xyz/tags/MolecularBond" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MolecularBond</span></a> <a href="https://mathstodon.xyz/tags/Orbitals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Orbitals</span></a> <a href="https://mathstodon.xyz/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a></p><p>CC: <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Dyoung" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>Dyoung</span></a></span> <span class="h-card" translate="no"><a href="https://mastodon.scot/@doucelassie" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>doucelassie</span></a></span></p>
Steven Carneiro<p>Testing quantum gravity in the lab:<br><a href="https://social.vivaldi.net/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a> <a href="https://social.vivaldi.net/tags/quantummechanics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantummechanics</span></a> <a href="https://social.vivaldi.net/tags/gravity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gravity</span></a> <a href="https://social.vivaldi.net/tags/generalrelativity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generalrelativity</span></a> <a href="https://social.vivaldi.net/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://social.vivaldi.net/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://social.vivaldi.net/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a><br>🥼</p><p><a href="https://phys.org/news/2024-09-theoretical-physicists-method-central-theory.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2024-09-theoreti</span><span class="invisible">cal-physicists-method-central-theory.html</span></a></p>
edp sciences<p><a href="https://masto.ai/tags/Books" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Books</span></a> | <a href="https://masto.ai/tags/Livres" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Livres</span></a> </p><p>New edition of this reference work by Franck Laloë, featuring the same fundamental and applied approach, along with 5 new additions. Essential for students and teachers of <a href="https://masto.ai/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a>.</p><p>More info: <a href="https://bit.ly/3XNes34" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/3XNes34</span><span class="invisible"></span></a><br><a href="https://masto.ai/tags/EDPSciences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EDPSciences</span></a> <br><a href="https://masto.ai/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a><br>PhysicsEducation<br><a href="https://masto.ai/tags/ScienceBooks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScienceBooks</span></a><br><a href="https://masto.ai/tags/QuantumMechanics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumMechanics</span></a><br><a href="https://masto.ai/tags/PhysicsStudents" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhysicsStudents</span></a><br><a href="https://masto.ai/tags/STEMEducation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>STEMEducation</span></a><br><a href="https://masto.ai/tags/AcademicBooks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcademicBooks</span></a><br><span class="h-card" translate="no"><a href="https://a.gup.pe/u/bookstodon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>bookstodon</span></a></span> <br><span class="h-card" translate="no"><a href="https://newsmast.community/@books" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>books@newsmast.community</span></a></span> <br><span class="h-card" translate="no"><a href="https://lemmy.ml/c/books" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>books@lemmy.ml</span></a></span> <br><span class="h-card" translate="no"><a href="https://a.gup.pe/u/science" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>science</span></a></span> <br><span class="h-card" translate="no"><a href="https://newsmast.community/@academia" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>academia</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/academicchatter" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>academicchatter</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/academicsunite" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>academicsunite</span></a></span></p>
IT News<p>What are Photons, Anyway? - Photons are particles of light, or waves, or something like that, right? [Mithuna ... - <a href="https://hackaday.com/2024/08/01/what-are-photons-anyway/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">hackaday.com/2024/08/01/what-a</span><span class="invisible">re-photons-anyway/</span></a> <a href="https://schleuss.online/tags/waveparticleduality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>waveparticleduality</span></a> <a href="https://schleuss.online/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a> <a href="https://schleuss.online/tags/photonics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photonics</span></a> <a href="https://schleuss.online/tags/particle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>particle</span></a> <a href="https://schleuss.online/tags/wavicles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>wavicles</span></a> <a href="https://schleuss.online/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://schleuss.online/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://schleuss.online/tags/photon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photon</span></a> <a href="https://schleuss.online/tags/wave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>wave</span></a></p>
Flipboard Science Desk<p>Quantum information theorists are shedding light on entanglement, one of the spooky mysteries of quantum mechanics.</p><p>From <span class="h-card" translate="no"><a href="https://newsie.social/@TheConversationUS" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>TheConversationUS</span></a></span>: "The year 2025 marks the 100th anniversary of the birth of quantum mechanics. ... Given recent developments in quantum information science, researchers ... are using quantum information theory to explore new ways of thinking about these unanswered foundational questions."</p><p><a href="https://flip.it/dGr0QW" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">flip.it/dGr0QW</span><span class="invisible"></span></a></p><p><a href="https://flipboard.social/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://flipboard.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://flipboard.social/tags/Computing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Computing</span></a> <a href="https://flipboard.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://flipboard.social/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://flipboard.social/tags/Tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tech</span></a> <a href="https://flipboard.social/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a></p>
Freya Blekman<p>When two quantum particles are produced in a coherent state, they are entangled,<br>meaning their behavior/decay is connected even when they are some distance from<br>each other. All of the tests we do at the LHC are of <a href="https://sciencemastodon.com/tags/quantumphysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantumphysics</span></a><br>[<a href="https://sciencemastodon.com/tags/quantumphysics" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sciencemastodon.com/tags/quant</span><span class="invisible">umphysics</span></a>] of course, and <a href="https://sciencemastodon.com/tags/CMSPaper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CMSPaper</span></a><br>[<a href="https://sciencemastodon.com/tags/CMSPaper" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sciencemastodon.com/tags/CMSPa</span><span class="invisible">per</span></a>] 1320 confirms entanglement also<br>happens with top quarks <a href="https://arxiv.org/abs/2406.03976" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2406.03976</span><span class="invisible"></span></a><br>[<a href="https://arxiv.org/abs/2406.03976" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2406.03976</span><span class="invisible"></span></a>]</p>