101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

518
active users

#brms

0 posts0 participants0 posts today
Pierre de Villemereuil<p>Incidentally, our companion <a href="https://ecoevo.social/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> Reacnorm package is now live in CRAN, so it's as easy as `install.packages("Reacnorm")` and `vignette("TutoReacnorm")` to access our nice tutorial on analyse reaction norms using the <a href="https://ecoevo.social/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> and Reacnorm package.</p><p><a href="https://cran.r-project.org/package=Reacnorm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cran.r-project.org/package=Rea</span><span class="invisible">cnorm</span></a></p>
Teixi<p><span class="h-card" translate="no"><a href="https://dair-community.social/@timnitGebru" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>timnitGebru</span></a></span> </p><p>» However while research funding dried up and the term <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> became less used, many green shoots where planted and continued more quietly under discipline specific names: <br>cognitive systems, <br>machine learning, <br>intelligent systems, <br>knowledge representation and reasoning. </p><p>Offshoots of these then made their way into commercial systems, such as <a href="https://mastodon.social/tags/ExpertSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ExpertSystems</span></a> in the <a href="https://mastodon.social/tags/BusinessRules" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BusinessRules</span></a> Management System <a href="https://mastodon.social/tags/BRMS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BRMS</span></a> market. «<br><a href="https://blog.kie.org/2012/05/drools-5-4-artificial-intelligence-a-little-history.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.kie.org/2012/05/drools-5-</span><span class="invisible">4-artificial-intelligence-a-little-history.html</span></a></p>
Physalia-courses<p>🧐All our last courses in February are <a href="https://mas.to/tags/soldout" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>soldout</span></a>. But there are still a few seats available for some of our courses in March!</p><p>👉<a href="https://physalia-courses.org/courses-workshops/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">physalia-courses.org/courses-w</span><span class="invisible">orkshops/</span></a><br><a href="https://mas.to/tags/Genomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Genomics</span></a> <a href="https://mas.to/tags/MetaAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MetaAnalysis</span></a> <a href="https://mas.to/tags/Rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rstats</span></a> <a href="https://mas.to/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://mas.to/tags/GAMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GAMs</span></a> <a href="https://mas.to/tags/Proteomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Proteomics</span></a> <a href="https://mas.to/tags/MassSpectrometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MassSpectrometry</span></a> <a href="https://mas.to/tags/NetworkAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NetworkAnalysis</span></a> <span class="h-card"><a href="https://genomic.social/@Amandatron89" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>Amandatron89</span></a></span> <span class="h-card"><a href="https://genomic.social/@nanopore" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>nanopore</span></a></span> <span class="h-card"><a href="https://fosstodon.org/@lgatto" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>lgatto</span></a></span> <span class="h-card"><a href="https://tech.lgbt/@wiernik" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>wiernik</span></a></span> <span class="h-card"><a href="https://mastodon.social/@gavinsimpson" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>gavinsimpson</span></a></span></p>
Stefan Herzog<p>OK.</p><p><a href="https://fediscience.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://fediscience.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fediscience.org/tags/chatgpt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chatgpt</span></a> <a href="https://fediscience.org/tags/berlin" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>berlin</span></a> <a href="https://fediscience.org/tags/rain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rain</span></a></p>
Stefan Herzog<p>OK.</p><p><a href="https://fediscience.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://fediscience.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fediscience.org/tags/chatgpt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chatgpt</span></a></p>
Matti Vuorre 🖖<p><span class="h-card"><a href="https://mastodon.online/@scottclaessens" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>scottclaessens</span></a></span> has some really great blog posts about <a href="https://fosstodon.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> modelling with <a href="https://fosstodon.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a>. Like this one about spatial dependency in between-country correlations: <a href="https://scottclaessens.github.io/blog/2022/crossnational/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">scottclaessens.github.io/blog/</span><span class="invisible">2022/crossnational/</span></a></p>
Andrew Heiss :rstats:<p>Loving tidybayes + ggdist more and more and more. Check out how easy it is to plot all your priors (even the tricky LKJ distribution!) at once, automatically, with ggdist::parse_dist()! (code here: <a href="https://gist.github.com/andrewheiss/a4e0c0ab2d735625ac17ec8a081f0f32" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">gist.github.com/andrewheiss/a4</span><span class="invisible">e0c0ab2d735625ac17ec8a081f0f32</span></a>) <a href="https://fediscience.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fediscience.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a></p>
Brenton Wiernik 🏳️‍🌈<p>Can folks help me think through smtg:<br>I’ve got a 5-point Likert response with 1 binary predictor. If I dichotomize it into Agree/Str Agree vs other 3 groups and model as binomial, that is equivalent to a constrained multinomial model. What are those constraints? <a href="https://tech.lgbt/tags/Stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Stats</span></a> <a href="https://tech.lgbt/tags/Statsodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statsodon</span></a> <a href="https://tech.lgbt/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a></p>
Ewan Carr<p>Time for an <a href="https://fediscience.org/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a>:</p><p>I’m Ewan 👋 a statistician and researcher in Biostatistics &amp; Health Informatics, King’s College London. I do things with numbers and mental health.</p><p>Right now, that includes: (1) mental-physical links in routine data; (2) wearable sensors to predict depression; (3) clinical trials of digital interventions.</p><p>I’m excited about <a href="https://fediscience.org/tags/OpenScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenScience</span></a>, <a href="https://fediscience.org/tags/Bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bayesian</span></a> (<a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a>), <a href="https://fediscience.org/tags/MixedModels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MixedModels</span></a>, <a href="https://fediscience.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a>, <a href="https://fediscience.org/tags/tidyverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidyverse</span></a>, <a href="https://fediscience.org/tags/Quarto" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quarto</span></a>, <a href="https://fediscience.org/tags/DAGs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DAGs</span></a>.</p><p>Elsewhere: gravel cycling, ⚽️, ☕️, breaking things in <a href="https://fediscience.org/tags/Linux" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Linux</span></a>.</p>
Andrew Heiss :rstats:<p>More *Bayes Rules!* notes + <a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://fediscience.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> translation: logistic and negative binomial models, which are super tricky to work with!</p><p>I added extra stuff on marginal effects, including the (new!) ability to integrate out random effects with {marginaleffects}</p><p><a href="https://bayesf22-notebook.classes.andrewheiss.com/bayes-rules/18-chapter.html" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bayesf22-notebook.classes.andr</span><span class="invisible">ewheiss.com/bayes-rules/18-chapter.html</span></a></p><p><a href="https://fediscience.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://fediscience.org/tags/statTootstics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statTootstics</span></a> <a href="https://fediscience.org/tags/statsodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsodon</span></a></p>
Andrew Heiss :rstats:<p>My notes + <a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://fediscience.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> translation of *Bayes Rules!* continues with the densest &amp; most important chapter of the whole book—multilevel models with varying intercepts *and* slopes. The book covers every detail of these models, including the mystical ρ term! <a href="https://fediscience.org/tags/stan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stan</span></a> <a href="https://fediscience.org/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://fediscience.org/tags/statsodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsodon</span></a> <a href="https://fediscience.org/tags/statTootstics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statTootstics</span></a> </p><p><a href="https://bayesf22-notebook.classes.andrewheiss.com/bayes-rules/17-chapter.html" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bayesf22-notebook.classes.andr</span><span class="invisible">ewheiss.com/bayes-rules/17-chapter.html</span></a></p>