Paul Balduf<p>My article together with Kimia Shaban has appeared in JHEP today. We have examined the <a href="https://mathstodon.xyz/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> of <a href="https://mathstodon.xyz/tags/Feynmangraph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Feynmangraph</span></a> s in <a href="https://mathstodon.xyz/tags/QFT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QFT</span></a> , and how they can be exploited to efficiently compute <a href="https://mathstodon.xyz/tags/amplitudes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>amplitudes</span></a> at high loop order. <br>The article is open access, and the dataset is freely available from my website if you want to explore statistics and correlations yourself. Predicting the values of these Feynman integrals could also be interesting as a test case for <a href="https://mathstodon.xyz/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <br><a href="https://link.springer.com/article/10.1007/JHEP11(2024)038" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.springer.com/article/10.1</span><span class="invisible">007/JHEP11(2024)038</span></a></p>