101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

504
active users

#machinelearning

18 posts16 participants3 posts today
Compsci Weekly<p>Go AI SDK: an idiomatic SDK to write AI applications and agents against any model or LLM provider.</p><p><a href="https://github.com/jetify-com/ai" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/jetify-com/ai</span><span class="invisible"></span></a></p><p>Discussions: <a href="https://discu.eu/q/https://github.com/jetify-com/ai" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://github.com/</span><span class="invisible">jetify-com/ai</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/golang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>golang</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.social/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a></p>
Aunty<p>I finally got round to reading <a href="https://aus.social/tags/blindsight" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blindsight</span></a> recently, and got a little obsessed thinking about transhumanism and technofeudalism. I ended up writing one of my longer blogposts where I managed to tie together ML, Transhumanism, The Internet, Christian History and the Matrix. </p><p><a href="https://caffeineandlasers.com/blogs/TranshumanisminaTechnofeudalSociety.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">caffeineandlasers.com/blogs/Tr</span><span class="invisible">anshumanisminaTechnofeudalSociety.html</span></a></p><p><a href="https://aus.social/tags/scifi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scifi</span></a> <a href="https://aus.social/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://aus.social/tags/transhumanism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>transhumanism</span></a> <a href="https://aus.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Harald Klinke<p>Algorithm, Image, Art by <span class="h-card" translate="no"><a href="https://post.lurk.org/@machine_agency" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>machine_agency</span></a></span> <br>An essential and critical inquiry into how algorithmic media reshape visual culture—from ancient optics to generative AI.</p><p>Lee draws on art history and media archaeology to make sense of the aesthetics and epistemology of machine-generated images.</p><p><a href="https://det.social/tags/AIArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIArt</span></a> <a href="https://det.social/tags/MediaArchaeology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MediaArchaeology</span></a> <a href="https://det.social/tags/VisualCulture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VisualCulture</span></a> <a href="https://det.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://det.social/tags/DigitalArtHistory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalArtHistory</span></a> <a href="https://det.social/tags/AlgorithmicMedia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicMedia</span></a> <a href="https://det.social/tags/ArtTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtTheory</span></a></p><p><a href="https://neural.it/2025/05/rosemary-lee-algorithm-image-art/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">neural.it/2025/05/rosemary-lee</span><span class="invisible">-algorithm-image-art/</span></a></p>
Compsci Weekly<p>Vision Language Models are Biased</p><p><a href="https://arxiv.org/abs/2505.23941" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2505.23941</span><span class="invisible"></span></a></p><p>Discussions: <a href="https://discu.eu/q/https://arxiv.org/abs/2505.23941" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://arxiv.org/a</span><span class="invisible">bs/2505.23941</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Leanpub<p>The Hundred-Page Machine Learning Book (PDF + EPUB + extra PDF formats) by Andriy Burkov is on sale on Leanpub! Its suggested price is $40.00; get it for $14.00 with this coupon: <a href="https://leanpub.com/sh/Tnie0coi" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">leanpub.com/sh/Tnie0coi</span><span class="invisible"></span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputerScience</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/Ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ai</span></a></p>
Top Tech Tidbits ♿<p>AI-Weekly for Tuesday, June 3, 2025 - Issue 167<br><a href="https://ai-weekly.ai/newsletter-06-03-2025/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">ai-weekly.ai/newsletter-06-03-</span><span class="invisible">2025/</span></a></p><p>✨ The Week's News in Artificial Intelligence<br>A Mind Vault Solutions, Ltd. Publication<br><a href="https://mastodon.toptechtidbits.com/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://mastodon.toptechtidbits.com/tags/news" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>news</span></a> <a href="https://mastodon.toptechtidbits.com/tags/ainews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ainews</span></a> <a href="https://mastodon.toptechtidbits.com/tags/artificialintelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artificialintelligence</span></a> <a href="https://mastodon.toptechtidbits.com/tags/aiweekly" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aiweekly</span></a> <a href="https://mastodon.toptechtidbits.com/tags/technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technology</span></a> <a href="https://mastodon.toptechtidbits.com/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://mastodon.toptechtidbits.com/tags/technews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technews</span></a> <a href="https://mastodon.toptechtidbits.com/tags/techtrends" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>techtrends</span></a> <a href="https://mastodon.toptechtidbits.com/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.toptechtidbits.com/tags/robotics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>robotics</span></a> <a href="https://mastodon.toptechtidbits.com/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://mastodon.toptechtidbits.com/tags/airesearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>airesearch</span></a> <a href="https://mastodon.toptechtidbits.com/tags/futuretech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>futuretech</span></a></p><p>Subscribers: 44,496 🔢️ subscribers were sent this issue via email.</p>
blaze.email<p>📊 Three ML highlights this week:<br>- Fast CUDA-C kernels outperforming PyTorch<br>- DeepSeek's scale efficiency explained <br>- New conformal prediction for uncertainty estimation</p><p><a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> </p><p><a href="https://blaze.email/Machine-Learning-Engineer" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blaze.email/Machine-Learning-E</span><span class="invisible">ngineer</span></a></p>
Free Software Foundation<p>Local <a href="https://hostux.social/tags/FSF40" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FSF40</span></a> celebrations in <a href="https://hostux.social/tags/Warsaw" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Warsaw</span></a>, <a href="https://hostux.social/tags/Poland" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Poland</span></a>: <a href="https://hostux.social/tags/SoftwareFreedom" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SoftwareFreedom</span></a> quiz, panel about <a href="https://hostux.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a>, and improv show. Happy birthday!</p>
j_bertolotti<p><a href="https://mathstodon.xyz/tags/PhysicsJournalClub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhysicsJournalClub</span></a> <br>"Model-free estimation of the Cramér–Rao bound for deep learning microscopy in complex media"<br>by I. Starshynov et al.</p><p>Nat. Photon. (2025)<br><a href="https://doi.org/10.1038/s41566-025-01657-6" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s41566-025-016</span><span class="invisible">57-6</span></a></p><p>As everybody who ever tried to orient themselves while immersed in thick fog knows, scattering scrambles information. The question "how much information is still there?" is not particularly interesting as the answer is "essentially all of it", as elastic scattering can't destroy information. A much more interesting question is "how much information can we retrieve?" In order to even try to give an answer we need to be a bit more specific, so the authors placed a small reflective surface behind a scattering layer and asked how much information about its transverse position could be retrieved. This is a well-posed question, and the answer takes the form of a "Cramér–Rao bound" (<a href="https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Cram%C3%</span><span class="invisible">A9r%E2%80%93Rao_bound</span></a>).<br>After estimating this upper bound, the authors investigate how well a trained neural network can do at this task, and show that a specifically built convolutional neural network can almost reach the theoretical bound.</p><p>[Conflict of interest: Ilya Starshynov (the first author) did his PhD in my group.]</p><p><a href="https://mathstodon.xyz/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mathstodon.xyz/tags/InformationTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationTheory</span></a> <a href="https://mathstodon.xyz/tags/Optics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Optics</span></a> <a href="https://mathstodon.xyz/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a></p>
Compsci Weekly<p>[R] Darwin Godel Machine: Open-Ended Evolution of Self-Improving Agents</p><p><a href="https://arxiv.org/abs/2505.22954" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2505.22954</span><span class="invisible"></span></a></p><p>Discussions: <a href="https://discu.eu/q/https://arxiv.org/abs/2505.22954" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://arxiv.org/a</span><span class="invisible">bs/2505.22954</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Compsci Weekly<p>[D] How chaotic is chaos? How some AI for Science / SciML papers are overstating accuracy claims</p><p><a href="https://www.stochasticlifestyle.com/how-chaotic-is-chaos-how-some-ai-for-science-sciml-papers-are-overstating-accuracy-claims/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">stochasticlifestyle.com/how-ch</span><span class="invisible">aotic-is-chaos-how-some-ai-for-science-sciml-papers-are-overstating-accuracy-claims/</span></a></p><p>Discussions: <a href="https://discu.eu/q/https://www.stochasticlifestyle.com/how-chaotic-is-chaos-how-some-ai-for-science-sciml-papers-are-overstating-accuracy-claims/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://www.stochas</span><span class="invisible">ticlifestyle.com/how-chaotic-is-chaos-how-some-ai-for-science-sciml-papers-are-overstating-accuracy-claims/</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/julia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>julia</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Migsar Navarro<p>A good friend of mine asked me to share about a great opportunity for two full-time phd research positions in <a href="https://mastodon.social/tags/mechatronics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mechatronics</span></a> in <a href="https://mastodon.social/tags/Mexico" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mexico</span></a> City.</p><p>If you are into <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/c" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>c</span></a>++, embedded systems, <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> or real-time operating systems, please send me a DM so I can send you the document. There is even the offering of legal assistance to get a visa, and the salary seems competitive to me.</p><p>Please share if you know someone that might be interested.</p>
Compsci Weekly<p>[P] gvtop: 🎮 Material You TUI for monitoring NVIDIA GPUs</p><p><a href="https://github.com/gvlassis/gvtop" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/gvlassis/gvtop</span><span class="invisible"></span></a></p><p>Discussions: <a href="https://discu.eu/q/https://github.com/gvlassis/gvtop" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://github.com/</span><span class="invisible">gvlassis/gvtop</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.social/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a> <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a></p>
Yuna<p>Garbage in, garbage out – even Agentic AI can’t save you from yourself.</p><p>Artificial intelligence is only as brilliant as the data it’s spoon-fed – and spoiler alert: your data is often trash.<br>Whether it’s traditional machine learning, generative models, or your shiny new agentic systems, the pattern remains insultingly consistent:<br> • Bad data? Expect bad decisions.<br> • Incomplete data? Enjoy half-baked ideas.<br> • Outdated data? Say hello to irrelevant nonsense.</p><p>I often talk about what AI can or tragically still can’t do.<br>But here’s the real twist: the problem isn’t the system. It’s you. Or more specifically, the glorious mess you call your “data foundation.”</p><p>You don’t have a lack of innovation.<br>You have a lack of clean data structures, maintained knowledge bases, and basic contextual awareness.<br>And then you expect the AI to magically fill gaps that should never have existed in the first place.</p><p><a href="https://hachyderm.io/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a> <a href="https://hachyderm.io/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://hachyderm.io/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://hachyderm.io/tags/DataQuality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataQuality</span></a> <a href="https://hachyderm.io/tags/DataManagement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataManagement</span></a> <a href="https://hachyderm.io/tags/BigData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BigData</span></a> <a href="https://hachyderm.io/tags/coding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>coding</span></a> <a href="https://hachyderm.io/tags/Programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Programming</span></a></p>
Compsci Weekly<p>[D] Chart shows that FP8 for training becoming more popular</p><p><a href="https://x.com/EpochAIResearch/status/1927826918159655116" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">x.com/EpochAIResearch/status/1</span><span class="invisible">927826918159655116</span></a></p><p>Discussions: <a href="https://discu.eu/q/https://x.com/EpochAIResearch/status/1927826918159655116" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://x.com/Epoch</span><span class="invisible">AIResearch/status/1927826918159655116</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Xamanismo Coletivo<p>"What matters here, to me, is that the most advanced technologies, processes and businesses on the planet — <a href="https://hachyderm.io/tags/artificialintelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artificialintelligence</span></a> and <a href="https://hachyderm.io/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> platforms built by IBM, Google, Microsoft, Amazon and others — are brought to bear on <a href="https://hachyderm.io/tags/fossilfuel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fossilfuel</span></a> extraction, production and distribution: the number one driver of <a href="https://hachyderm.io/tags/climatechange" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climatechange</span></a>, of CO2 and greenhouse gas emissions, and of <a href="https://hachyderm.io/tags/globalextinction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>globalextinction</span></a>."</p><p>"<a href="https://hachyderm.io/tags/WaysofBeing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WaysofBeing</span></a>: Animal, Plants, Machines: the search for a planetary intelligence", James Bridle — Introduction: More Than Human</p><p><a href="https://hachyderm.io/tags/BookPreview" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BookPreview</span></a>: <a href="https://www.google.com.br/books/edition/Ways_of_Being/E4Y3EAAAQBAJ?hl=en&amp;gbpv=1&amp;printsec=frontcover" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">google.com.br/books/edition/Wa</span><span class="invisible">ys_of_Being/E4Y3EAAAQBAJ?hl=en&amp;gbpv=1&amp;printsec=frontcover</span></a></p>
Compsci Weekly<p>[R] The Resurrection of the ReLU</p><p><a href="https://arxiv.org/pdf/2505.22074" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2505.22074</span><span class="invisible"></span></a></p><p>Discussions: <a href="https://discu.eu/q/https://arxiv.org/pdf/2505.22074" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://arxiv.org/p</span><span class="invisible">df/2505.22074</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Webdev Weekly<p>This website does not exist</p><p><a href="https://thiswebsitedoesnotexist.net" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thiswebsitedoesnotexist.net</span><span class="invisible"></span></a></p><p>Discussions: <a href="https://discu.eu/q/https://thiswebsitedoesnotexist.net" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://thiswebsite</span><span class="invisible">doesnotexist.net</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.social/tags/vibecoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vibecoding</span></a> <a href="https://mastodon.social/tags/webdev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webdev</span></a></p>
IT News<p>AI video just took a startling leap in realism. Are we doomed? - Last week, Google introduced Veo 3, its newest video generat... - <a href="https://arstechnica.com/ai/2025/05/ai-video-just-took-a-startling-leap-in-realism-are-we-doomed/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">arstechnica.com/ai/2025/05/ai-</span><span class="invisible">video-just-took-a-startling-leap-in-realism-are-we-doomed/</span></a> <a href="https://schleuss.online/tags/culturalsingularity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>culturalsingularity</span></a> <a href="https://schleuss.online/tags/aiconfabulations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aiconfabulations</span></a> <a href="https://schleuss.online/tags/aivideogenerator" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aivideogenerator</span></a> <a href="https://schleuss.online/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://schleuss.online/tags/videosynthesis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>videosynthesis</span></a> <a href="https://schleuss.online/tags/aijabberwocky" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aijabberwocky</span></a> <a href="https://schleuss.online/tags/jabberwocky" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>jabberwocky</span></a> <a href="https://schleuss.online/tags/deepfakes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deepfakes</span></a> <a href="https://schleuss.online/tags/googleveo" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>googleveo</span></a> <a href="https://schleuss.online/tags/features" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>features</span></a> <a href="https://schleuss.online/tags/aifakes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aifakes</span></a> <a href="https://schleuss.online/tags/aivideo" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aivideo</span></a> <a href="https://schleuss.online/tags/biz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biz</span></a>⁢ <a href="https://schleuss.online/tags/google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>google</span></a> <a href="https://schleuss.online/tags/veo2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>veo2</span></a> <a href="https://schleuss.online/tags/veo3" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>veo3</span></a> <a href="https://schleuss.online/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a></p>
Compsci Weekly<p>[D] My first blog, PPO to GRPO</p><p><a href="https://medium.com/@opmyth/from-ppo-to-grpo-1681c837de5f" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@opmyth/from-ppo-to</span><span class="invisible">-grpo-1681c837de5f</span></a></p><p>Discussions: <a href="https://discu.eu/q/https://medium.com/%40opmyth/from-ppo-to-grpo-1681c837de5f" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://medium.com/</span><span class="invisible">%40opmyth/from-ppo-to-grpo-1681c837de5f</span></a></p><p><a href="https://mastodon.social/tags/compsci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compsci</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.social/tags/reinforcementlearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>reinforcementlearning</span></a></p>