amen zwa, esq.<p><a href="https://mathstodon.xyz/tags/MIT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MIT</span></a>'s <a href="https://mathstodon.xyz/tags/EE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EE</span></a> professor <a href="https://mathstodon.xyz/tags/Oppenheim" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Oppenheim</span></a>, in 1975, gave what might well be the most intuitive description of <a href="https://mathstodon.xyz/tags/convolution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>convolution</span></a>. It's sneaky. It's backdoor. It's simple. It's brilliant!💕</p><p><a href="https://youtu.be/TuCYGjp7WKU?si=JUyXKg0xB_Vm7WSB&t=1389" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">youtu.be/TuCYGjp7WKU?si=JUyXKg</span><span class="invisible">0xB_Vm7WSB&t=1389</span></a></p>