101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

482
active users

#computationalneuroscience

0 posts0 participants0 posts today
Dan Goodman<p>Almost last call to register for UK neural computation conference in London July 10-11. Registration deadline is July 1st. We have some great talks and posters as well as a session on funding with ARIA.</p><p>Look forward to seeing you all there. Now click here 👇</p><p><a href="https://neuralcomputation.uk/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">neuralcomputation.uk/</span><span class="invisible"></span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a></p>
Laurent Perrinet<p>Researchers in France are working on creating a French network of researchers to organize interaction, communication and training in <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> </p><p>If you are a CompNeuro working in France, consider joining, and registering to our mailing list: <a href="https://listes.services.cnrs.fr/wws/subscribe/rt_neurocomp" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">listes.services.cnrs.fr/wws/su</span><span class="invisible">bscribe/rt_neurocomp</span></a></p><p><a href="https://bsky.app/profile/lauradugue.bsky.social/post/3lo6rrtvb3k2v" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bsky.app/profile/lauradugue.bs</span><span class="invisible">ky.social/post/3lo6rrtvb3k2v</span></a><br><a href="https://www.linkedin.com/posts/laura-dugu%C3%A9-59964756_rtneurocomp-r%C3%A9seau-fran%C3%A7ais-de-neurosciences-activity-7324039702427090944-LKsN" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">linkedin.com/posts/laura-dugu%</span><span class="invisible">C3%A9-59964756_rtneurocomp-r%C3%A9seau-fran%C3%A7ais-de-neurosciences-activity-7324039702427090944-LKsN</span></a></p>
Dan Goodman<p>How do babies and blind people learn to localise sound without labelled data? We propose that innate mechanisms can provide coarse-grained error signals to boostrap learning.</p><p>New preprint from <span class="h-card" translate="no"><a href="https://mastodon.social/@yang_chu" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>yang_chu</span></a></span>. </p><p><a href="https://arxiv.org/abs/2001.10605" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2001.10605</span><span class="invisible"></span></a></p><p>Thread below 👇</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/compneurosci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneurosci</span></a></p>
El Duvelle Neuro<p>With the current situation in the <a href="https://neuromatch.social/tags/US" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>US</span></a>, several of my former colleagues there are looking for a <a href="https://neuromatch.social/tags/PostDocJob" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PostDocJob</span></a> in <a href="https://neuromatch.social/tags/Europe" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Europe</span></a>, to do <a href="https://neuromatch.social/tags/BehaviouralNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BehaviouralNeuroscience</span></a> or <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> in <a href="https://neuromatch.social/tags/SpatialCognition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpatialCognition</span></a> (or adjacent). <br>Lots of hashtags I know..</p><p>Do you know a <a href="https://neuromatch.social/tags/EU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EU</span></a> or <a href="https://neuromatch.social/tags/UK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UK</span></a> <a href="https://neuromatch.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> lab looking to hire a postdoc in these fields? Let me know and I'll pass it on to them!</p>
Dan Goodman<p>Come along to my (free, online) UCL NeuroAI talk next week on neural architectures. What are they good for? All will finally be revealed and you'll never have to think about that question again afterwards. Yep. Definitely that.</p><p>🗓️ Wed 12 Feb 2025 <br>⏰ 2-3pm GMT<br>ℹ️ Details and registration: <a href="https://www.eventbrite.co.uk/e/ucl-neuroai-talk-series-tickets-1216638381149" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">eventbrite.co.uk/e/ucl-neuroai</span><span class="invisible">-talk-series-tickets-1216638381149</span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> <a href="https://neuromatch.social/tags/NeuroAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuroAI</span></a></p>
Ankur Sinha "FranciscoD"<p>We are very happy to provide a consolidated update on the <a href="https://fosstodon.org/tags/NeuroML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuroML</span></a> ecosystem in our <span class="h-card" translate="no"><a href="https://fediscience.org/@eLife" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>eLife</span></a></span> paper, “The NeuroML ecosystem for standardized multi-scale modeling in neuroscience”: <a href="https://doi.org/10.7554/eLife.95135.3" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.7554/eLife.95135.3</span><span class="invisible"></span></a></p><p><a href="https://fosstodon.org/tags/NeuroML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuroML</span></a> is a standard and software ecosystem for data-driven biophysically detailed <a href="https://fosstodon.org/tags/ComputationalModelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalModelling</span></a> endorsed by the <span class="h-card" translate="no"><a href="https://neuromatch.social/@INCF" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>INCF</span></a></span> and CoMBINE, and includes a large community of users and software developers. </p><p><a href="https://fosstodon.org/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://fosstodon.org/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> <a href="https://fosstodon.org/tags/ComputationalModelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalModelling</span></a> 1/x</p>
Dan Goodman<p>What's the right way to think about modularity in the brain? This devilish 😈 question is a big part of my research now, and it started with this paper with <span class="h-card" translate="no"><a href="https://neuromatch.social/@GabrielBena" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>GabrielBena</span></a></span> finally published after the first preprint in 2021! </p><p><a href="https://www.nature.com/articles/s41467-024-55188-9" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41467-024</span><span class="invisible">-55188-9</span></a></p><p>We know the brain is physically structured into distinct areas ("modules"?). We also know that some of these have specialised function. But is there a necessary connection between these two statements? What is the relationship - if any - between 'structural' and 'functional' modularity?</p><p>TLDR if you don't want to read the rest: there is no necessary relationship between the two, although when resources are tight, functional modularity is more likely to arise when there's structural modularity. We also found that functional modularity can change over time! Longer version follows.</p><p><a href="https://neuromatch.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://neuromatch.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a></p>
Dan Goodman<p>New preprint! With Swathi Anil and <span class="h-card" translate="no"><a href="https://neuromatch.social/@marcusghosh" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>marcusghosh</span></a></span>.</p><p>If you want to get the most out of a multisensory signal, you should take it's temporal structure into account. But which neural architectures do this best? 🧵👇</p><p><a href="https://www.biorxiv.org/content/10.1101/2024.12.19.629348v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">24.12.19.629348v1</span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a></p>
Brian simulator<p>In the spirit of end-of-year celebrations, we've just released Brian 2.8 🌠 <br>Alongside the usual helping of small improvements and fixes, this release comes with an important performance improvement for random number generation in C++ standalone mode.</p><p>Head to the release notes for more details! <a href="https://brian2.readthedocs.io/en/2.8.0/introduction/release_notes.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">brian2.readthedocs.io/en/2.8.0</span><span class="invisible">/introduction/release_notes.html</span></a></p><p><a href="https://neuromatch.social/tags/FOSS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FOSS</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> <a href="https://neuromatch.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a></p>
INCF<p>Applications open to the University of Sussex Neuroscience's September 2025 PhD program, fully-funded, with a UKRI rate stipend 🧠</p><p>📅 Apply by Jan 13, 2025</p><p>Research themes incl:<br>- Sensory neuroscience<br>- Neural circuits of behavior<br>- Learning &amp; memory<br>- Neurodegeneration<br>- Computational neuroscience &amp; AI<br>- Translational &amp; clinical neuroscience</p><p>Learn more: bit.ly/3VEnqgW</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/neuroinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroinformatics</span></a> <a href="https://neuromatch.social/tags/neurodegeneration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurodegeneration</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a></p>
INCF<p>Applications open to the University of Sussex Neuroscience's September 2025 PhD program, fully-funded, with a UKRI rate stipend 🧠</p><p>📅 Apply by Jan 13, 2025</p><p>Research themes incl:<br>- Sensory neuroscience<br>- Neural circuits of behavior<br>- Learning &amp; memory<br>- Neurodegeneration<br>- Computational neuroscience &amp; AI<br>- Translational &amp; clinical neuroscience</p><p>Learn more: bit.ly/3VEnqgW</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/neuroinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroinformatics</span></a> <a href="https://neuromatch.social/tags/neurodegeneration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurodegeneration</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a></p>
Albert Cardona<p>"DendroTweaks: An interactive approach for unraveling dendritic dynamics", by Makarov et al. 224, from Panayiota Poirazi's lab<br><a href="https://www.biorxiv.org/content/10.1101/2024.09.06.611191v1.full" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">24.09.06.611191v1.full</span></a></p><p>Runs on the web browser: try it out online here <br><a href="https://dendrotweaks.dendrites.gr/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">dendrotweaks.dendrites.gr/</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a></p>
Peter Moleman<p>Keynote Lecture by Nicole Rust on brain science and new, productive ways to interfere in the case of dysfunctions.<br><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/cognitivescience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cognitivescience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/psychiatry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>psychiatry</span></a> <a href="https://neuromatch.social/tags/ComplexDynamicalSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComplexDynamicalSystems</span></a> <br><a href="https://www.youtube.com/watch?app=desktop&amp;v=m47qHAJftR4" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?app=desktop&amp;</span><span class="invisible">v=m47qHAJftR4</span></a></p>
Dan Goodman<p>New preprint on our "collaborative modelling of the brain" (COMOB) project. Over the last two years, a group of us (led by <span class="h-card" translate="no"><a href="https://neuromatch.social/@marcusghosh" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>marcusghosh</span></a></span>) have been working together, openly, online, with anyone free to join, on a computational neuroscience research project</p><p><a href="https://www.biorxiv.org/content/10.1101/2024.07.19.604252v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">24.07.19.604252v1</span></a></p><p>This was an experiment in a more bottom up, collaborative way of doing science, rather than the hierarchical PI-led model. So how did we do it?</p><p>We started from the tutorial I gave at <span class="h-card" translate="no"><a href="https://neuromatch.social/@CosyneMeeting" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>CosyneMeeting</span></a></span> 2022 on spiking neural networks that included a starter Jupyter notebook that let you train a spiking neural network model on a sound localisation task.</p><p><a href="https://neural-reckoning.github.io/cosyne-tutorial-2022/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">neural-reckoning.github.io/cos</span><span class="invisible">yne-tutorial-2022/</span></a></p><p><a href="https://www.youtube.com/watch?v=GTXTQ_sOxak&amp;list=PL09WqqDbQWHGJd7Il3yVxiBts5nRSxvJ4&amp;index=1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=GTXTQ_sOxa</span><span class="invisible">k&amp;list=PL09WqqDbQWHGJd7Il3yVxiBts5nRSxvJ4&amp;index=1</span></a></p><p>Participants were free to use and adapt this to any question they were interested in (we gave some ideas for starting points, but there was no constraint). Participants worked in groups or individually, sharing their work on our repository and joining us for monthly meetings. </p><p>The repository was set up to automatically build a website using <span class="h-card" translate="no"><a href="https://fosstodon.org/@mystmarkdown" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mystmarkdown</span></a></span> showing the current work in progress of all projects, and (later in the project) the paper as we wrote it. This kept everyone up to date with what was going on.</p><p><a href="https://comob-project.github.io/snn-sound-localization/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">comob-project.github.io/snn-so</span><span class="invisible">und-localization/</span></a></p><p>We started from a simple feedforward network of leaky integrate-and-fire neurons, but others adapted it to include learnable delays, alternative neuron models, biophysically detailed models, incorporated Dale's law, etc.</p><p>We found some interesting results, including that shorter time constants improved performance (consistent with what we see in the auditory system). Surprisingly, the network seemed to be using an "equalisation cancellation" strategy rather than the expected coincidence detection.</p><p>Ultimately, our scientific results were not incredibly strong, but we think this was a valuable experiment for a number of reasons. Firstly, it shows that there are other ways of doing science. Secondly, many people got to engage in a research experience they otherwise wouldn't. Several participants have been motivated to continue their work beyond this project. It also proved useful for generating teaching material, and a number of MSc projects were based on it.</p><p>With that said, we learned some lessons about how to do this better, and yes, we will be doing this again (call for participation in September/October hopefully). The main challenge will be to keep the project more focussed without making it top down / hierarchical.</p><p>We believe this is possible, and we are inspired by the recent success of the Busy Beaver challenge, a bottom up project of mathematics amateurs that found a proof to a 40 year old conjecture.</p><p><a href="https://www.quantamagazine.org/amateur-mathematicians-find-fifth-busy-beaver-turing-machine-20240702/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">quantamagazine.org/amateur-mat</span><span class="invisible">hematicians-find-fifth-busy-beaver-turing-machine-20240702/</span></a></p><p>We will be calling for proposals for the next project, engaging in an open discussion with all participants to refine the ideas before starting, and then inviting the proposer of the most popular project to act as a 'project lead' keeping it focussed without being hierarchical.</p><p>If you're interested in being involved in that, please join our (currently fairly quiet) new discord server, or follow me or <span class="h-card" translate="no"><a href="https://neuromatch.social/@marcusghosh" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>marcusghosh</span></a></span> for announcements.</p><p><a href="https://discord.gg/kUzh5MHjVE" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">discord.gg/kUzh5MHjVE</span><span class="invisible"></span></a></p><p>I'm excited for a future where scientists work more collaboratively, and where everyone can participate. Diversity will lead to exciting new ideas and progress. Computational science has huge potential here, something we're also pursuing at <span class="h-card" translate="no"><a href="https://neuromatch.social/@neuromatch" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>neuromatch</span></a></span>.</p><p>Let's make it happen!</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/computationalscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://neuromatch.social/tags/metascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>metascience</span></a> <a href="https://neuromatch.social/tags/SpikingNeuralNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpikingNeuralNetworks</span></a> <a href="https://neuromatch.social/tags/auditory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>auditory</span></a></p>
Dan Goodman<p>SPIKING NEURAL NETWORKS!</p><p>If you love them, join us at SNUFA24. Free, online workshop, Nov 5-6 (2-6pm CET). Usually ~700 participants.</p><p>Invited speakers: Chiara Bartolozzi, David Kappel, Anna Levina, Christian Machens</p><p>Posters + 8 contributed talks selected by participant vote.</p><p>Abstract submission is quick and easy (300 word max), and now open until the deadline Sept 27.</p><p>Registration is free, but mandatory.</p><p>Hope to see you there!</p><p><a href="https://snufa.net/2024/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">snufa.net/2024/</span><span class="invisible"></span></a></p><p><a href="https://neuromatch.social/tags/SpikingNeuralNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpikingNeuralNetworks</span></a> <a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/neuromorphic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuromorphic</span></a> <a href="https://neuromatch.social/tags/neuromorphiccomputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuromorphiccomputing</span></a> <a href="https://neuromatch.social/tags/Neuromorphicengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuromorphicengineering</span></a></p>
Dan Goodman<p>We have a new paper with <span class="h-card" translate="no"><a href="https://neuromatch.social/@marcusghosh" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>marcusghosh</span></a></span> <span class="h-card" translate="no"><a href="https://neuromatch.social/@GabrielBena" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>GabrielBena</span></a></span> on why we have nonlinearity in multimodal circuits.</p><p>My lab page has links to journal, preprint, code, talk on youtube, etc.:<br><a href="http://neural-reckoning.org/pub_multimodal.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">neural-reckoning.org/pub_multi</span><span class="invisible">modal.html</span></a></p><p>TLDR: Why is it a question that we have nonlinearity in these circuits? Well, the classical multimodal task can be solved with a linear network, so maybe those nonlinear neurons aren't actually needed?</p><p>We find that nonlinearity is very important when you consider an extension of the classical multimodal task, embedded into a noisy background, and you don't know when the multimodal signal is active. We think this is a more realistic scenario, for example in a predatory-prey interaction.</p><p>We're following up with two additional projects at the moment, looking at what happens when you have even more extended temporal structure in the task (preview: you can still do very well with fairly simple feedforward or recurrent circuits), and when you model agents navigating a multimodal environment (e.g. foraging, hunting; early results suggest recurrent circuits are more robust).</p><p>I don't think we can fully understand multimodal circuits until we start looking at more realistic, temporally extended tasks. Exciting times ahead, and we'd be happy to work with any experimental groups interested in pursuing this. Please get in touch!</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/multimodal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multimodal</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a></p>
Eleonora Russo<p>Interested in investigating how neuronal dynamics supports reinforcement learning?<br>Join us! 📢 PhD position in the Brain Dynamics Laboratory at @SantAnnaPisa, Italy.<br><a href="https://neuromatch.social/tags/RNN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RNN</span></a> <a href="https://neuromatch.social/tags/ReinforcementLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ReinforcementLearning</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a></p><p>Deadline: at 13:00 of the 29 July 2024.<br><a href="https://www.unicam.it/bandi/2024/bando-n0046958-del-28062024" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">unicam.it/bandi/2024/bando-n00</span><span class="invisible">46958-del-28062024</span></a><br>Project description under ‘Code 4.2’:<br><a href="https://www.unicam.it/sites/default/files/bandi/2024/06/ANNEX%201_TAN_ciclo%20XL_0.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">unicam.it/sites/default/files/</span><span class="invisible">bandi/2024/06/ANNEX%201_TAN_ciclo%20XL_0.pdf</span></a></p><p>The PhD position will be at the Brain Dynamics Laboratory @SantAnnaPisa:<br><a href="https://santannapisa.it/it/istituto/biorobotica/brain-dynamics-laboratory" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">santannapisa.it/it/istituto/bi</span><span class="invisible">orobotica/brain-dynamics-laboratory</span></a></p><p>in collaboration with the Kelsch lab, @uni_mainz, Germany, with the opportunity to spend a period abroad<br><a href="https://www.kelschlab.com/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">kelschlab.com/</span><span class="invisible"></span></a></p>
Jess Thompson<p>Pleased to share my latest research "Zero-shot counting with a dual-stream neural network model" about a glimpsing neural network model the learns visual structure (here, number) in a way that generalises to new visual contents. The model replicates several neural and behavioural hallmarks of numerical cognition. </p><p><a href="https://neuromatch.social/tags/neuralnetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuralnetworks</span></a> <a href="https://neuromatch.social/tags/cognition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cognition</span></a> <a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/generalization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generalization</span></a> <a href="https://neuromatch.social/tags/vision" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vision</span></a> <a href="https://neuromatch.social/tags/enactivism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>enactivism</span></a> <a href="https://neuromatch.social/tags/enactiveCognition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>enactiveCognition</span></a> <a href="https://neuromatch.social/tags/cognitivescience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cognitivescience</span></a> <a href="https://neuromatch.social/tags/CognitiveNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CognitiveNeuroscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> </p><p><a href="https://arxiv.org/abs/2405.09953" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2405.09953</span><span class="invisible"></span></a></p>
Eugenio Piasini<p>The Neuroscience department at SISSA is hiring! We are looking for candidates for multiple assistant professor (tenure track) openings across a broad spectrum of topics in neuroscience (molecular, cellular, circuit, systems, cognitive and computational). SISSA is an international school in Trieste, Italy, promoting basic and applied research in Neuroscience, Mathematics and Physics and dedicated to the training of PhD students.</p><p>For more information, you can find the call for expression of interest on our website: <br><a href="https://www.sissa.it/research/neuroscience" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">sissa.it/research/neuroscience</span><span class="invisible"></span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/CognitiveNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CognitiveNeuroscience</span></a> <br><a href="https://neuromatch.social/tags/neurobiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neurobiology</span></a> <br><a href="https://neuromatch.social/tags/genomics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>genomics</span></a> <br><a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <br><a href="https://neuromatch.social/tags/facultyposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>facultyposition</span></a></p>
Neuromatch<p>Applications for students and TAs are open for all Neuromatch Academy courses - Computational Neuroscience, Deep Learning, &amp; NeuroAI! You don't want to miss this! </p><p>➡️ Student apps close March 24<br>➡️ TA apps close March 17 </p><p>🌟 Apply here: <a href="https://neuromatch.io/courses" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">neuromatch.io/courses</span><span class="invisible"></span></a> </p><p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/neuromatch" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>neuromatch@a.gup.pe</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/academicchatter" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>academicchatter</span></a></span> </p><p><a href="https://neuromatch.social/tags/Neuromatch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuromatch</span></a> <a href="https://neuromatch.social/tags/NeuromatchAcademy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuromatchAcademy</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> <a href="https://neuromatch.social/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://neuromatch.social/tags/NeuroAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuroAI</span></a> <a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/AcademicChatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcademicChatter</span></a> <a href="https://neuromatch.social/tags/FediHire" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FediHire</span></a></p>