101010.pl is one of the many independent Mastodon servers you can use to participate in the fediverse.
101010.pl czyli najstarszy polski serwer Mastodon. Posiadamy wpisy do 2048 znaków.

Server stats:

513
active users

#algebra

0 posts0 participants0 posts today
Project Gutenberg<p>Algebra is more than alphabet soup – it’s the language of algorithms and relationships</p><p>By Courtney Gibbons</p><p><a href="https://theconversation.com/algebra-is-more-than-alphabet-soup-its-the-language-of-algorithms-and-relationships-234541" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theconversation.com/algebra-is</span><span class="invisible">-more-than-alphabet-soup-its-the-language-of-algorithms-and-relationships-234541</span></a></p><p><a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mastodon.social/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a></p>
Flipboard Science Desk<p>What do Sudoku, AI, Rubik’s cubes, clocks and molecules have in common? They can all be reimagined as algebraic equations.</p><p>From <span class="h-card" translate="no"><a href="https://newsie.social/@TheConversationUS" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>TheConversationUS</span></a></span>: "Algebra is more than alphabet soup – it’s the language of algorithms and relationships."</p><p><a href="https://flip.it/41r-jh" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">flip.it/41r-jh</span><span class="invisible"></span></a></p><p><a href="https://flipboard.social/tags/Algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algebra</span></a> <a href="https://flipboard.social/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://flipboard.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://flipboard.social/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a></p>
Sci-books.com<p>Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge Studies in Advanced Mathematics Book 26) 1st Edition by J. Gilbert (PDF)<br>Author: J. Gilbert<br>File Type: PDF<br>Download at <a href="https://sci-books.com/clifford-algebras-and-dirac-operators-in-harmonic-analysis-cambridge-studies-in-advanced-mathematics-book-26-1st-edition-b01dm26vjq/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sci-books.com/clifford-algebra</span><span class="invisible">s-and-dirac-operators-in-harmonic-analysis-cambridge-studies-in-advanced-mathematics-book-26-1st-edition-b01dm26vjq/</span></a><br><a href="https://mastodon.social/tags/Algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algebra</span></a>, <a href="https://mastodon.social/tags/J" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>J</span></a>.Gilbert</p>
Bibliolater 📚 📜 🖋<p>**A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode**</p><p>“_....the hyper-Catalan numbers 𝐶𝐦 count the number of subdivisions of a polygon into a given number of triangles, quadrilaterals, pentagons, etc. (its type 𝐦), and we show that their generating series solves a polynomial equation of a particular geometric form. This solution is straightforwardly extended to solve the general univariate polynomial equation._”</p><p>Wildberger, N. J. and Rubine, D. (2025) ‘A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode’, The American Mathematical Monthly, pp. 1–20. doi: <a href="https://doi.org/10.1080/00029890.2025.2460966" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1080/00029890.2025.</span><span class="invisible">2460966</span></a>.</p><p><a href="https://qoto.org/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAccess</span></a> <a href="https://qoto.org/tags/OA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OA</span></a> <a href="https://qoto.org/tags/Article" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Article</span></a> <a href="https://qoto.org/tags/DOI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DOI</span></a> <a href="https://qoto.org/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://qoto.org/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://qoto.org/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://qoto.org/tags/Algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algebra</span></a> <a href="https://qoto.org/tags/Polynomials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polynomials</span></a> <a href="https://qoto.org/tags/Academia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Academia</span></a> <a href="https://qoto.org/tags/Academics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Academics</span></a></p>
Bibliolater 📚 📜 🖋<p>🔴 **Descartes’ Mathematics**</p><p>“_In La Géométrie, Descartes details a groundbreaking program for geometrical problem-solving—what he refers to as a “geometrical calculus” (calcul géométrique)—that rests on a distinctive approach to the relationship between algebra and geometry._”</p><p>Domski, Mary, “Descartes’ Mathematics”, The Stanford Encyclopedia of Philosophy (Summer 2025 Edition), Edward N. Zalta &amp; Uri Nodelman (eds.), forthcoming URL = &lt;<a href="https://plato.stanford.edu/archives/sum2025/entries/descartes-mathematics/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">plato.stanford.edu/archives/su</span><span class="invisible">m2025/entries/descartes-mathematics/</span></a>&gt;. </p><p><a href="https://qoto.org/tags/Descartes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Descartes</span></a> <a href="https://qoto.org/tags/History" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>History</span></a> <a href="https://qoto.org/tags/HistSci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HistSci</span></a> <a href="https://qoto.org/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://qoto.org/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://qoto.org/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://qoto.org/tags/Algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algebra</span></a> <a href="https://qoto.org/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a></p>
Nalini Joshi<p>Having started to look at getting a replacement computer, I realized that I haven’t kept up with developments. I want to do many <a href="https://mathstodon.xyz/tags/Gr%C3%B6bner" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Gröbner</span></a> basis calculations. Do symbolic <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> programs care how many GPUs the computer has? Have they now been adapted to run on GPUs?</p>
Charlotte Aten<p>A fundamental result in universal algebra is the Subdirect Representation Theorem, which tells us how to decompose an algebra \(A\) into its "basic parts". Formally, we say that \(A\) is a subdirect product of \(A_1\), \(A_2\), ..., \(A_n\) when \(A\) is a subalgebra of the product<br>\[<br> A_1\times A_2\times\cdots\times A_n<br>\]<br>and for each index \(1\le i\le n\) we have for the projection \(\pi_i\) that \(\pi_i(A)=A_i\). In other words, a subdirect product "uses each component completely", but may be smaller than the full product.</p><p>A trivial circumstance is that \(\pi_i:A\to A_i\) is an isomorphism for some \(i\). The remaining components would then be superfluous. If an algebra \(A\) has the property than any way of representing it as a subdirect product is trivial in this sense, we say that \(A\) is "subdirectly irreducible".</p><p>Subdirectly irreducible algebras generalize simple algebras. Subdirectly irreducible groups include all simple groups, as well as the cyclic \(p\)-groups \(\mathbb{Z}_{p^n}\) and the Prüfer groups \(\mathbb{Z}_{p^\infty}\).</p><p>In the case of lattices, there is no known classification of the finite subdirectly irreducible (or simple) lattices. This page (<a href="https://math.chapman.edu/~jipsen/posets/si_lattices92.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">math.chapman.edu/~jipsen/poset</span><span class="invisible">s/si_lattices92.html</span></a>) by Peter Jipsen has diagrams showing the 92 different nontrivial subdirectly irreducible lattices of order at most 8. See any patterns?</p><p>We know that every finite subdirectly irreducible lattice can be extended to a simple lattice by adding at most two new elements (Lemma 2.3 from Grätzer's "The Congruences of a Finite Lattice", <a href="https://arxiv.org/pdf/2104.06539" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/pdf/2104.06539</span><span class="invisible"></span></a>), so there must be oodles of finite simple lattices out there.</p><p><a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/AbstractAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractAlgebra</span></a></p>
Colin the Mathmo<p>Every polynomial with real coefficients factors into linear and quadratic terms.</p><p>How much machinery is needed to show this?</p><p>If it crosses the X-axis then it has a linear term.</p><p>If it doesn't cross the X-axis then it is of even degree, and the roots come in complex conjugate pairs.</p><p>What the minimum needed to see this?</p><p><a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <br><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/ComplexNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComplexNumbers</span></a> <br><a href="https://mathstodon.xyz/tags/MathsChat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsChat</span></a> <a href="https://mathstodon.xyz/tags/MathChat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathChat</span></a></p>
Joshua Grochow<p>Just found an English translation of Emmy Noether's 1921 "Idealtheorie in Ringbereichen" ("Ideal Theory in Rings"): <a href="https://arxiv.org/abs/1401.2577" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/1401.2577</span><span class="invisible"></span></a></p><p>(while editing the wikipedia page on subdirect products - my first wiki edit to add an Emmy Noether reference! Turns out there's a direct lineage from Noether to Birkhoff's introduction of subdirect products in universal algebra. Just one more way in which she really revolutionized algebra.)</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/AlgebraicGeomtry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgebraicGeomtry</span></a> <a href="https://mathstodon.xyz/tags/Algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algebra</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a></p>
Niels Moseley<p>The <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a>/Scipy sparse linalg solver couldn't solve the quadratic placement problem for the industry standard 'adaptec1' benchmark. It ran out of memory (16 GB of RAM). This isn't even a large problem by today's standards. <a href="https://mastodon.social/tags/vlsi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vlsi</span></a> <a href="https://mastodon.social/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a></p>
mc ☕<p>Learn Algebra with Julia - Math for entry-level IT professionals, vol. 1, <a href="https://qoto.org/tags/mybook" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mybook</span></a> <a href="https://qoto.org/tags/newbook" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>newbook</span></a> 🆕 is available here:<br><a href="https://leanpub.com/learnalgebrawithjulia/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">leanpub.com/learnalgebrawithju</span><span class="invisible">lia/</span></a></p><p>&gt; As W. W. Saywer writes in his Mathematicians Delight, “The main object of this book is to dispel the fear of mathematics.”</p><p>&gt; “It’s no secret that knowing advanced mathematical concepts and being comfortable with learning <a href="https://qoto.org/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> will open up more avenues for you as a software <a href="https://qoto.org/tags/developer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>developer</span></a>. …"</p><p>&gt; The very nature of programming is mathematical.</p><p>-- from the Intro</p><p><a href="https://qoto.org/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://qoto.org/tags/julialang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>julialang</span></a> <a href="https://qoto.org/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a></p>
Charlotte Aten<p>I've found a citation of my own work on Wikipedia for the first time!</p><p><a href="https://en.wikipedia.org/wiki/Commutative_magma" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Commutat</span><span class="invisible">ive_magma</span></a></p><p>Naturally, I read this page before I wrote my rock-paper-scissors paper. It's neat to see that my own work is now the citation for something that was unsourced "original research" on Wikipedia.</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/Wikipedia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Wikipedia</span></a> <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/games" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>games</span></a> <a href="https://mathstodon.xyz/tags/RockPaperScissors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RockPaperScissors</span></a> <a href="https://mathstodon.xyz/tags/AbstractAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractAlgebra</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <a href="https://mathstodon.xyz/tags/GameTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GameTheory</span></a></p>
Joshua Grochow<p>But! TIL there's a categorical definition that supposedly agrees w/ "surjection" on any variety of algebras: </p><p>h is "categorically surjective" (a term I just made up) if for any factorization h=fg with f monic, f must be an iso.</p><p>(h/t Knoebel's book <a href="https://doi.org/10.1007/978-0-8176-4642-4" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1007/978-0-8176-464</span><span class="invisible">2-4</span></a>) </p><p>Are there categorical definitions that agree w/ injective (resp. surjective) on all concrete categories?</p><p><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a></p>
Joshua Grochow<p>The notion of epimorphism can be quite different from surjection, e.g. in Rings. </p><p>Though I recently learned epimorphisms can be characterized in terms of Isbell's zig-zags: <a href="https://en.wikipedia.org/wiki/Isbell%27s_zigzag_theorem" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Isbell%2</span><span class="invisible">7s_zigzag_theorem</span></a>.</p><p>Whereas monic seems to capture the notion of "injective" quite well in a categorical def. And indeed the two agree on any variety of algebras in the sense of universal algebra.</p><p><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Joshua Grochow<p>Abelian Artinian Noetherian Cohen-Macaulay Hilbert Jacobson rings </p><p><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/CommutativeAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CommutativeAlgebra</span></a></p>
Charlotte Aten<p>I posted a new paper on the arXiv!</p><p><a href="https://arxiv.org/abs/2409.12923" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2409.12923</span><span class="invisible"></span></a></p><p>In "Higher-dimensional book-spaces" I show that for each \(n\) there exists an \(n\)-dimensional compact simplicial complex which is a topological modular lattice but cannot be endowed with the structure of topological distributive lattice. This extends a result of Walter Taylor, who did the \(2\)-dimensional case.</p><p>I think this kind of result is interesting because we can see that whether spaces continuously model certain equations is a true topological invariant. All of the spaces that I discuss here are contractible, but only some can have a distributive lattice structure.</p><p>A similar phenomenon happens with H-spaces. The \(7\)-sphere is an H-space, and it is even a topological Moufang loop, but it cannot be made into a topological group, even though our homotopical tools tell us that it "looks like a topological group".</p><p>This is (a cleaned up version of) something I did during my second year of graduate school. It only took me about six years to post it.</p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/AbstractAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractAlgebra</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <a href="https://mathstodon.xyz/tags/LatticeTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LatticeTheory</span></a></p>
Charlotte Aten<p>The Cayley table below has an infinite amount of structure in the following sense: For any finite list of equations that hold for this operation, there will always be another equation which holds but is not a consequence of the given ones. In other words, the \(3\)-element magma below is not finitely based.</p><p>\[<br>\begin{array}{r|ccc}<br>&amp; 0 &amp; 1 &amp; 2 \\ \hline<br>0 &amp; 0 &amp; 0 &amp; 0 \\<br>1 &amp; 0 &amp; 0 &amp; 1 \\<br>2 &amp; 0 &amp; 2 &amp; 2<br>\end{array}<br>\]</p><p>In 1951, Lyndon showed that every \(2\)-element algebra is finitely based, so three is the smallest order of a non-finitely based algebra. This example was found by Murskiĭ in 1965.</p><p><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/AbstractAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractAlgebra</span></a> <a href="https://mathstodon.xyz/tags/UniversalAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UniversalAlgebra</span></a> <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a></p>
🇵🇸 Kebab Savoureux 🇵🇸<p>I just started to learn some <a href="https://piaille.fr/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> yesterday because I'm learning some <a href="https://piaille.fr/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> and I had to use a semi group, which reminded me of some classes I took as a student. I'm currently learning about algebraic structures.</p><p>So far, I read Wikipedia articles, they seem pretty good, but I'd be glad to take any recommendations about algebra and algebraic structures, if you have any :)</p>
Joshua Grochow<p>Tag yourself.</p><p><a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a></p>
昜曰<p>兴趣标签🏷️{<a href="https://mastodon.social/tags/%E5%8E%BB%E4%B8%AD%E5%BF%83%E5%8C%96" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>去中心化</span></a> <a href="https://mastodon.social/tags/decentralisation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decentralisation</span></a> <a href="https://mastodon.social/tags/%E4%B8%87%E8%B1%A1%E9%82%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>万象邦</span></a> <a href="https://mastodon.social/tags/mastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mastodon</span></a> <a href="https://mastodon.social/tags/%E4%B9%B3%E9%BD%BF%E8%B1%A1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>乳齿象</span></a> <a href="https://mastodon.social/tags/%E9%82%A6%E8%81%94%E5%AE%87%E5%AE%99" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>邦联宇宙</span></a> <a href="https://mastodon.social/tags/fediverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fediverse</span></a> <a href="https://mastodon.social/tags/%E8%A1%8C%E4%B8%BA%E5%85%B1%E9%80%9A" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>行为共通</span></a> <a href="https://mastodon.social/tags/ActivityPub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ActivityPub</span></a> <a href="https://mastodon.social/tags/%E6%97%85%E6%B8%B8" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>旅游</span></a> <a href="https://mastodon.social/tags/tour" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tour</span></a> <a href="https://mastodon.social/tags/%E8%87%AA%E7%84%B6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>自然</span></a> <a href="https://mastodon.social/tags/nature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nature</span></a> <a href="https://mastodon.social/tags/%E7%A7%91%E6%8A%80" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>科技</span></a> <a href="https://mastodon.social/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://mastodon.social/tags/technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technology</span></a> <a href="https://mastodon.social/tags/%E6%98%93%E7%BB%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>易经</span></a> <a href="https://mastodon.social/tags/IChing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IChing</span></a> <a href="https://mastodon.social/tags/%E7%88%BB%E5%8D%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>爻卦</span></a> <a href="https://mastodon.social/tags/Yao" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Yao</span></a> <a href="https://mastodon.social/tags/Gua" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Gua</span></a> <a href="https://mastodon.social/tags/%E8%80%83%E5%8F%A4" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>考古</span></a> <a href="https://mastodon.social/tags/archaeo" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>archaeo</span></a> <a href="https://mastodon.social/tags/%E7%91%9C%E4%BC%BD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>瑜伽</span></a> <a href="https://mastodon.social/tags/yoga" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>yoga</span></a> <a href="https://mastodon.social/tags/%E7%BC%96%E7%A8%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>编程</span></a> <a href="https://mastodon.social/tags/%E8%AF%AD%E8%A8%80" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>语言</span></a> <a href="https://mastodon.social/tags/Programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Programming</span></a> <a href="https://mastodon.social/tags/language" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>language</span></a> <a href="https://mastodon.social/tags/%E6%91%84%E5%BD%B1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>摄影</span></a> <a href="https://mastodon.social/tags/Photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.social/tags/%E6%95%B0%E5%AD%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>数学</span></a> <a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mastodon.social/tags/%E5%95%9A%E8%AE%BA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>啚论</span></a> <a href="https://mastodon.social/tags/%E5%9B%BE%E8%AE%BA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>图论</span></a> <a href="https://mastodon.social/tags/graphtheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphtheory</span></a> <a href="https://mastodon.social/tags/%E5%93%B2%E5%AD%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>哲学</span></a> <a href="https://mastodon.social/tags/Philosophy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Philosophy</span></a> <a href="https://mastodon.social/tags/%E9%80%BB%E8%BE%91" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>逻辑</span></a> <a href="https://mastodon.social/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://mastodon.social/tags/%E4%BB%A3%E6%95%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>代数</span></a> <a href="https://mastodon.social/tags/algebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algebra</span></a> <a href="https://mastodon.social/tags/%E7%BB%84%E5%90%88%E5%AD%A6" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>组合学</span></a> <a href="https://mastodon.social/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a> <a href="https://mastodon.social/tags/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>人工智能</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/%E8%87%AA%E5%8A%A8%E5%8C%96" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>自动化</span></a> <a href="https://mastodon.social/tags/Automate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Automate</span></a> <a href="https://mastodon.social/tags/%E6%9C%BA%E5%99%A8%E4%BA%BA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>机器人</span></a> <a href="https://mastodon.social/tags/Robot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Robot</span></a> <a href="https://mastodon.social/tags/%E9%97%B2%E8%B0%88%E8%83%A1%E4%BE%83" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>闲谈胡侃</span></a> <a href="https://mastodon.social/tags/chat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chat</span></a> <a href="https://mastodon.social/tags/nonsense" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nonsense</span></a>}</p>